skip to main content


Search for: All records

Creators/Authors contains: "Mallouk, Thomas E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report a precious‐metal‐free molecular catalyst‐based photocathode that is active for aqueous CO 2 reduction to CO and methanol. The photoelectrode is composed of cobalt phthalocyanine molecules anchored on graphene oxide which is integrated via a (3‐aminopropyl)triethoxysilane linker to p‐type silicon protected by a thin film of titanium dioxide. The photocathode reduces CO 2 to CO with high selectivity at potentials as mild as 0 V versus the reversible hydrogen electrode (vs RHE). Methanol production is observed at an onset potential of −0.36 V vs RHE, and reaches a peak turnover frequency of 0.18 s −1 . To date, this is the only molecular catalyst‐based photoelectrode that is active for the six‐electron reduction of CO 2 to methanol. This work puts forth a strategy for interfacing molecular catalysts to p‐type semiconductors and demonstrates state‐of‐the‐art performance for photoelectrochemical CO 2 reduction to CO and methanol. 
    more » « less